Part Number Hot Search : 
BA7181FS PD70F BD312 LEADFREE A1720 A1206 MSQ01002 SN68340
Product Description
Full Text Search
 

To Download FTF3020-M Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IMAGE SENSORS
FTF3020-M Full Frame CCD Image Sensor
Product specification File under Image Sensors 1999 November 22
Philips Semiconductors
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
* * * * * * * * * * * * * * *
35mm film compatible image format (36 x 24 mm2) 6M active pixels (3072H x 2048V) Progressive scan Excellent anti-blooming Variable electronic shuttering Square pixel structure H and V binning 100% optical fill factor High linear dynamic range (>72dB) High sensitivity Low dark current and fixed-pattern noise Low read-out noise Data rate up to 36 MHz Mirrored, split and four quadrant read-out Perfectly matched to visual spectrum
Description
The FTF3020-M is a full frame CCD monochrome image sensor designed for professional digital photography applications, with very low dark current and a linear dynamic range of over 12 true bits at room temperature. The four low-noise output amplifiers, one at each corner of the chip, make the FTF3020-M suitable for a wide range of high-end visual light applications. With one output amplifier, a progressively scanned image can be read out at 5 frames per second. By using multiple outputs the frame rate increases accordingly. The device structure is shown in figure 1.
Device structure
Z
6 black lines
Y
Optical size: Chip size: Pixel size: Active pixels: Total no. of pixels: Optical black pixels: Timing pixels: Dummy register cells: Optical black lines:
36.864 mm (H) x 24.576 mm (V) 39.148 mm (H) x 26.508 mm (V) 12 m x 12 m 3072 (H) x 2048 (V) 3120 (H) x 2060 (V) Left: 20 Right: 20 Left: 4 Right: 4 Left: 7 Right: 7 Bottom: 6 Top: 6
20 4 W
7
2048
2060 lines
Image Area
active lines
3072 active pixels
6 black lines
4 20
X
7
Output amplifier
3120 cells Output register 3134 cells
Figure 1 - Device structure
1999 November
2
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Architecture of the FTF3020-M
The optical centres of all pixels in the image section form a square grid. The charge is generated and integrated in this section. Output registers are located below and above the image section for readout. After the integration time, the image charge is shifted one line at the time to either the upper or lower register or to both simultaneously, depending on the read-out mode. The left and the right half of each register can be controlled independently. This enables either single or multiple read-out. During vertical transport, the C3 gates separate the pixels in the register. The central C3 gates of the lower and upper registers are part of the left half of the sensor (W and Z quadrants respectively). Each register can be used for vertical binning. Each register contains a summing gate at both ends that can be used for horizontal binning (see figure 2).
IMAGE SECTION Image diagonal (active video only) Aspect ratio Active image width x height Pixel width x height Geometric fill factor Image clock pins Capacity of each clock phase Number of active lines Number of black reference lines Number of dummy black lines Total number of lines Number of active pixels per line Number of overscan (timing) pixels per line Number of black reference pixels per line Total number of pixels per line 44.30 mm 3:2 36.864 x 24.576 mm2 12x12 m2 100% 16 pins (A1..A4) 7.5nF per pin 2048 4 (=2x2) 8 (=2x4) 2060 3072 8 (2x4) 40 (2x20) 3120
OUTPUT REGISTERS Output buffers on each corner Number of registers Number of dummy cells per register Number of register cells per register Output register horizontal transport clock pins Capacity of each C-clock phase Overlap capacity between neighbouring C-clocks Output register Summing Gates Capacity of each SG Reset Gate clock phases Capacity of each RG Three-stage source follower 2 14 (2x7) 3134 (3120+14) 6 pins per register (C1..C3) 200 pF per pin 40pF 4 pins (SG) 15pF 4 pins (RG) 15pF
1999 November
3
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
7 dummy pixels
RD RG OG SG C2 C1 C3 C2 C1 C3
20 black &4 timing columns
C2 C1 C3 C2 C1 C3 C3 A1 A2 A3 A4 C2 C1 C3
3K image pixels
C2 C1 C3 C2 C1 C3
20 black & 4 timing columns
C2 C1 C3 C2 C1 C3 C2 C1 C3 A1 A2 A3 A4
7 dummy pixels
RD RG C2 C1 C3 C2 C1 SG OG
OUT_Z
OUT_Y
A1 A1 A2 A3 A4 A1
6 black lines
A1 A1 A2 A3 A4 A1 A2 A3
One Pixel
A2 A3 A4
A1 A1 A2 A3 A4 A1 A2 A3 A4
2K active images lines
IMAGE
3K x 2K FF CCD
A4
A1 A1 A2 A3 A4 A1 A2 A3 A4
SG: OG: RG: RD:
summing gate output gate reset gate reset drain
A1 A1 A2 A3 A4 A1 C2 C1 C3 C2 C1 C3
6 black lines
A1 A1 A2 A3 A4 A1
OUT_W
OG SG C2 C1 C3 RG RD
OUT_X
C2 C1 C3 C2 C1 SG OG RG RD
C2 C1 C3
C2 C1 C3
C2 C1 C3
C3
C2 C1 C3
C2 C1 C3
C2 C1 C3
C2 C1 C3
column 1
column 24 + 1
column 24 + 3K
column 24 +3K +24
A1, A2, A3, A4: clocks of image section
C1, C2, C3: clocks of horizontal registers
Figure 2 - Detailed internal structure
1999 November
4
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Specifications
ABSOLUTE MAXIMUM RATINGS1 GENERAL: storage temperature ambient temperature during operation voltage between any two gates DC current through any clock phase (absolute value) OUT current (no short circuit protection) VOLTAGES IN RELATION TO VPS: VNS, SFD, RD VCS, SFS all other pins VOLTAGES IN RELATION TO VNS: SFD, RD VCS, SFS, VPS all other pins MIN. MAX. UNIT
-55 -40 -20 -0.2 0
+80 +60 +20 +2.0 10
C C V A mA
-0.5 -8 -5
+30 +5 +25
V V V
-15 -30 -30
+0.5 +0.5 +0.5
V V V
DC CONDITIONS2 VNS3 VPS SFD SFS VCS OG RD N substrate P substrate Source Follower Drain Source Follower Source Current Source Output Gate Reset Drain
MIN. [V] 18 1 16 0 -5 4 13
TYPICAL [V] 24 3 20 0 0 6.5 15.5
MAX. [V] 28 7 24 0 3 8 18
MAX. [mA] 15 15 4.5 1 -
AC CLOCK LEVEL CONDITIONS2 IMAGE CLOCKS: A-clock amplitude during integration and hold A-clock amplitude during vertical transport (duty cycle=5/8) 4 A-clock low level Charge Reset (CR) level on A-clock 5 OUTPUT REGISTER CLOCKS: C-clock amplitude (duty cycle during hor. transport = 3/6) C-clock low level Summing Gate (SG) amplitude Summing Gate (SG) low level OTHER CLOCKS: Reset Gate (RG) amplitude Reset Gate (RG) low level Charge Reset (CR) pulse on Nsub
1 2
MIN.
TYPICAL
MAX.
UNIT
8 10 -5
10 14 0 -5
V V V V
4.75 2
5 3.5 10 3.5
5.25 10
V V V V
5
5
0
10 3 10
10 10
V V V
During Charge Reset it is allowed to exceed maximum rating levels (see note 5). All voltages in relation to SFS. 3 To set the VNS voltage for optimal Vertical Anti-Blooming (VAB), it should be adjustable between minimum and maximum values. 4 Three-level clock is preferred for maximum charge; the swing during vertical transport should be 4V higher than the voltage during integration. A two level clock (typically 10V) can be used if a lower maximum charge handling capacity is allowed. 5 Charge Reset can be achieved in two ways: * The typical A-clock low level is applied to all image clocks; for proper CR, an additional Charge Reset pulse on VNS is required (preferred). * The typical CR level is applied to all image clocks simultaneously.
1999 November
5
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Timing diagrams (for default operation)
AC CHARACTERISTICS Horizontal frequency (1/Tp) 1 Vertical frequency Charge Reset (CR) time Rise and fall times: image clocks (A) register clocks (C) 2 summing gate (SG) reset gate (RG)
1 2
MIN.
10 10 3 3 3
TYPICAL 18 50 193.7 20 5 5 5
MAX. 36 100
1/6 Tp 1/6 Tp 1/6 Tp
UNIT MHz kHz s ns ns ns ns
Tp = 1 clock period Duty cycle = 50% and phase shift of the C clocks is 120 degrees.
Frame Timing
Sensor Output H SSC L H A1 L H A2, A3, A4 L H CR L H Ahigh* L H VD L H BLC L H EXT. SHUTTER L
Dummy
2046 2047 2048 D B B
Black
B B B B B B B B D 1 2 3
Integration Time
Line Timing
SSC A1 A2 A3 A4 CR AHigh* VD BLC
H L H L H L H L H L H L H L H L H L
360 Tp 66 Tp 230 Tp 138 Tp 20 Tp 138 Tp 112Tp 138 Tp 204Tp
360 Tp
30 Tp
396 Tp
Pixel Timing
SSC C1 C2 C3 SG RG H L H L H L H L H L H L 3127 pixels 1Tp
Tp / 6
Tp = 1 / 18MHz = 55.56ns Pixel output sequence: 7 dummy, 20 black, 4 timing, 3072 active, 4 timing, 20 black Line Time: 3487 x Tp = 193.7s * During AHigh = H the phiA high level is increased from 10V to 14V (This is necessary during readout only)
VD: Frame pulse CR: Charge Reset BLC: Black Level Clamp A1 to A4: Vertical image clocks
C1 to C3: Horizontal register clocks SSC: Start-Stop C-clocks SG: Summing gate RG: Reset gate
Figure 3 - Timing diagrams
1999 November
6
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Line timing
SSC
A1 A2
A3
A4 --> time Y / Div. : 10V (A1, A2, A3, A 4); 5V (SSC)
Figure 4 - Vertical readout
Pixel timing
C1
C2
C3 SG
RG --> time Y / Div. : 5V (C1, C2, C3); 10V (SG, RG)
Figure 5 - Start horizontal readout
1999 November
7
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Performance
The test conditions for the performance characteristics are as follows: * All values are measured using typical operating conditions. * VNS is adjusted as low as possible while maintaining proper Vertical Anti-Blooming. * Sensor temperature = 60C (333K). * Horizontal transport frequency = 18MHz. * Vertical transport frequency = 50kHz (unless specified otherwise). * Integration time = 10ms (unless specified otherwise). * The light source is a lamp of 3200K in conjunction with neutral density filters and a 1.7mm thick BG40 infrared cut-off filter. For Linear Operation measurements, a temperature conversion filter (Melles Griot type no. 03FCG261, -120 mired, thickness: 2.5mm) is applied.
LINEAR OPERATION Linear dynamic range
1
MIN. 4200:1(12bit)
TYPICAL
MAX.
UNIT
Charge Transfer Efficiency 2 vertical Charge Transfer Efficiency 2 horizontal Image lag Resolution (MTF) @ 42 lp/mm Responsivity Quantum efficiency @ 530 nm Low Pass Shading
3
0.999995 0.999999 0 65 180 20 250 26 2.0 0.3 18 24 610 5 5 28 % % kel/lux*s % % % V mW
Random Non-Uniformity (RNU) 4 VNS required for good Vertical Anti-Blooming (VAB) Power dissipation at 2.5 frames/s
1 2
Linear dynamic range is defined as the ratio of Qlin to read-out noise (the latter reduced by Correlated Double Sampling). Charge Transfer Efficiency values are tested by evaluation and expressed as the value per gate transfer. 3 Low Pass Shading is defined as the ratio of the one- value of an 8x8 pixels blurred image (low-pass) to the mean signal value.
4
RNU is defined as the ratio of the one- value of the highpass image to the mean signal value at nominal light.
Linear Dynamic Range
14,000 12,000 10,000
LDR 35C 45C 55C
8,000 6,000 4,000 2,000 0 0 5
10
15
20
25
30
35
40
Hor. Frequency (MHz) Figure 6 - Typical Linear dynamic range vs. horizontal read-out frequency and sensor temperature
1999 November
8
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Maximum Read-out Speed
20 18
4 outputs
16 14
Images/sec.
12
2 outputs
10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100
1 output
Integration time (ms)
Figure 7 - Maximum number of images/second versus integration time
Quantum Efficiency
30 25
Quantum efficiency (%)
20 15 10 5 0 400 450 500 550 600 650 700 750 800
Wavelength (nm)
Figure 8 - Quantum efficiency versus wavelength
1999 November
9
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
LINEAR/SATURATION Full-well capacity saturation level (Qmax ) 1 Full-well capacity shading (Qmax, shading ) 2 Full-well capacity linear operation (Qlin ) Charge handling capacity 4 Overexposure handling
5 3
MIN.
TYPICAL
MAX.
UNIT
240
500 10
600 50
kel. % kel. kel. x Qmax level
180
350 600 200
1 2
Qmax is determined from the lowpass filtered image. Qmax, shading is the maximum difference of the full-well charges of all pixels, relative to Qmax. 3 The linear full-well capacity Qlin is calculated from linearity test (see dynamic range). The evaluation test guarantees 97% linearity. 4 Charge handling capacity is the largest charge packet that can be transported through the register and read-out through the output buffer. 5 Overexposure over entire area while maintaining good Vertical Anti-Blooming (VAB). It is tested by measuring the dark line.
Charge Handling vs. Integration/Transport Voltage
600
10V/14V
500
Output Signal (kel.) 9V/13V
400 300 200 100 0
8V/12V
1
2
3 4 Exposure (arbitrary units)
5
6
Figure 9 - Charge handling versus integration/transport voltage
1999 November
10
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
OUTPUT BUFFERS
MIN.
TYPICAL
MAX.
UNIT
Conversion factor Mutual conversion factor matching (ACF)1 Supply current Bandwidth Output impedance buffer (Rload = 3.3k, Cload = 2pF)
1
5
7.5 0 4.5 110 400
10 2
V/el. V/el. mA MHz
Matching of the four outputs is specified as ACF with respect to reference measured at the operating point (Qlin/2).
DARK CONDITION
MIN.
TYPICAL
MAX.
UNIT pA/cm2 nA/cm2 el. el.
Dark current level @ 30 C Dark current level @ 60 C Fixed Pattern Noise 1 (FPN) @ 60 C RMS readout noise @ 9MHz bandwidth after CDS
1
20 0.3 15 25
30 0.6 25 30
FPN is the one- value of the highpass image.
Dark Current
1000
Dark Current (pA/cm2)
100
10
1 0 10 20 30
Temp. (oC)
40
50
60
Figure 10 - Dark current versus temperature
1999 November
11
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Application information
Current handling One of the purposes of VPS is to drain the holes that are generated during exposure of the sensor to light. Free electrons are either transported to the VRD connection and, if excessive (from overexposure), free electrons are drained to VNS. No current should flow into any VPS connection of the sensor. During high overexposure a total current 10 to 15mA through all VPS connections together may be expected. The PNP emitter follower in the circuit diagram (figure 11) serves these current requirements.
VNS drains superfluous electrons as a result of overexposure. In other words, it only sinks current. During high overexposure a total current of 10 to 15mA through all VNS connections together may be expected. The NPN emitter follower in the circuit diagram meets these current requirements. The clamp circuit, consisting of the diode and electrolytic capacitor, enables the addition of a Charge Reset (CR) pulse on top of an otherwise stable VNS voltage. To protect the CCD, the current resulting from this pulse should be limited. This can be accomplished by designing a pulse generator with a rather high output impedance. emitter and the next stage short. The CCD output buffer can easily be destroyed by ESD. By using this emitter follower, this danger is suppressed; do NOT reintroduce this danger by measuring directly on the output pin of the sensor with an oscilloscope probe. Instead, measure on the output of the emitter follower. Slew rate limitation is avoided by avoiding a too-small quiescent current in the emitter follower; about 10mA should do the job. The collector of the emitter follower should be decoupled properly to suppress the Miller effect from the base-collector capacitance. A CCD output load resistor of 3.3k typically results in a bandwidth of 110MHz. The bandwidth can be enlarged to about 130MHz by using a resistor of 2.2k instead, which, however, also enlarges the on-chip power dissipation.
Device protection The output buffers of the FTF3020-M are likely to be damaged if VPS rises above SFD or RD at any time. This danger is most realistic during power-on or power-off of the camera. The RD voltage should always be lower than the SFD voltage.
Never exceed the maximum output current. This may damage the device permanently. The maximum output current should be limited to 10mA. Be especially aware that the output buffers of these image sensors are very sensitive to ESD damage. Because of the fact that our CCDs are built on an n-type substrate, we are dealing with some parasitic npn transistors. To avoid activation of these transistors during switch-on and switch-off of the camera, we recommend the application diagram of figure 11.
Decoupling of DC voltages All DC voltages (not VNS, which has additional CR pulses as described above) should be decoupled with a 100nF decoupling capacitor. This capacitor must be mounted as close as possible to the sensor pin. Further noise reduction (by bandwidth limiting) is achieved by the resistors in the connections between the sensor and its voltage supplies. The electrons that build up the charge packets that will reach the floating diffusions only add up to a small current, which will flow through VRD. Therefore a large series resistor in the VRD connection may be used. Outputs To limit the on-chip power dissipation, the output buffers are designed with open source outputs. Outputs to be used should therefore be loaded with a current source or more simply with a resistance to GND. In order to prevent the output (which typically has an output impedance of about 400) from bandwidth limitation as a result of capacitive loading, load the output with an emitter follower built from a high-frequency transistor. Mount the base of this transistor as close as possible to the sensor and keep the connection between the
Unused sections To reduce power consumption the following steps can be taken. Connect unused output register pins (C1...C3, SG, OG) and unused SFS pins to zero Volts. More information Detailed application information is provided in the application note AN01 entitled `Camera Electronics for the mK x nK CCD Image Sensor Family'.
1999 November
12
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Device Handling
An image sensor is a MOS device which can be destroyed by electrostatic discharge (ESD). Therefore, the device should be handled with care. Always store the device with short-circuiting clamps or on conductive foam. Always switch off all electric signals when inserting or removing the sensor into or from a camera (the ESD protection in the CCD image sensor process is less effective than the ESD protection of standard CMOS circuits). Being a high quality optical device, it is important that the cover glass remain undamaged. When handling the sensor, use fingercots. When cleaning the glass we recommend using ethanol (or possibly water). Use of other liquids is strongly discouraged: * if the cleaning liquid evaporates too quickly, rubbing is likely to cause ESD damage. * the cover glass and its coating can be damaged by other liquids. Rub the window carefully and slowly. Dry rubbing of the window may cause electro-static charges or scratches which can destroy the device.
VSFD CR pulse 0 BC 850C 0.5-1mA 100nF BAT74 BAT74 SFD 100nF + 2mA 1uF VNS OUT 100
keep short <10mm!
keep short! BFR 92A output for preprocessing 10mA <7pF! 100nF
BC 850C
3.3k
1k
0.5-1mA
27 BAT74 Schottky!
0.5-1mA BC 860C
VPS
15 BAT74 Schottky! 10k
VCS
Figure 11 - Application diagram to protect the FTF3020-M
100nF 100nF
100nF
10k
VRD
VOG
100nF
10k
1999 November
13
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Pin configuration
The FTF3020-M is mounted in a Pin Grid Array (PGA) package with 96 pins in a 20x15 grid of 52.70 x 40.00 mm2. The position of pin A1 (quadrant W) is marked with a gold dot on top of the package. The image clock phases of quadrant W are internally connected to X, and Y is connected to Z.
Symbol VNS VNS VNS VNS VPS SFD SFS VCS OG RD A1 A2 A3 A4 C1 C2 C3 SG RG OUT NC NC NC NC
Name N substrate N substrate N substrate N substrate P substrate Source Follower Drain Source Follower Source Current Source Output Gate Reset Drain Image Clock (Phase 1) Image Clock (Phase 2) Image Clock (Phase 3) Image Clock (Phase 4) Register Clock (Phase 1) Register Clock (Phase 2) Register Clock (Phase 3) Summing Gate Reset Gate Output Not Connected Not Connected Not Connected Not Connected
Pin # W A1 A5 C2 G1 A2 B2 D2 C1 B3 D1 B5 A3 A4 B4 F2 F1 G2 E1 E2 B1 I1 I2 H1 H2
Pin # X U1 U5 S2 M1 U2 T2 R2 S1 T3 R1 T5 U3 U4 T4 N2 N1 M2 P1 P2 T1 K1 K2 L1 L2
Pin # Y U10 U6 S9 M10 U9 T9 R9 S10 T8 R10 T6 U8 U7 T7 N9 N10 M9 E10 P9 T10 K10 K9 L10 L9
Pin # Z A10 A6 C9 G10 A9 B9 D9 C10 B8 D10 B6 A8 A7 B7 F9 F10 G9 P10 E9 B10 I10 I9 H10 H9
A
B
CDE
F
G
H
J
K
L
M
N
P
R
S
T
U
10 9 8 7 6
TOP
Z W
5 4 3 2 1
Y X
FTF3020-M
Figure 12 - FTF3020-M pin configuration (top view)
1999 November
14
Philips Semiconductors
Product specification
Full Frame CCD Image Sensor
FTF3020-M
Package information
Top cover glass to top chip 2.4 0.25 Chip - bottom package 1.7 0.15 SENSOR CRYSTAL COVER GLASS EPOXY GLUE Chip - cover glass 1.3 0.20 Cover glass 1.0 0.05
0.15
A
20
Image sensor chip
0.40
1.4 / 100
TOP VI W E
INDEX MARK PIN 1
26.35 0.15 52.7 0.53 1.27 0.15 4.57 0.15
40
COVER GLASS
STAND-OFF PIN
(2.54) 0.46 0.05
A is the center of the image area. Position of A: 26.35 0.15 to left edge of package 20.00 0.15 to upper edge of package 1.7 0.15 to bottom of package
35.56 0.20
Angle of rotation: less than 1 Sensor flatness: < 20 m (P-V) Cover glass: Corning 7059 Thickness of cover glass: 1 0.05 Refractive index: nd = 1.53 Double sided AR coating < 1% (430-660 nm) reflection
BOTTOM VIEW
All drawing units are in mm
48.26 0.27
Figure 13 - Mechanical drawing of the PGA package of the FTF3020-M
1999 November
15
Order codes
Philips reserves the right to change any information contained herein without notice. All information furnished by Philips is believed to be accurate. (c) Philips Electronics N.V. 1999 9922 157 31411
The sensors can be ordered using the following codes:
FTF3020-M sensors
Description FTF3020-M/TG FTF3020-M/EG FTF3020-M/IG FTF3020-M/HG Quality Grade Test grade Economy grade Industrial grade High grade Order Code 9922 157 31431 9922 157 31451 9922 157 31421 9922 157 31411
You can contact the Image Sensors division of Philips Semiconductors at the following address: Philips Semiconductors Image Sensors Internal Postbox WAG-05 Prof. Holstlaan 4 5656 AA Eindhoven The Netherlands phone fax +31 - 40 - 27 44 400 +31 - 40 - 27 44 090
www.semiconductors.philips.com/imagers/
Philips Semiconductors


▲Up To Search▲   

 
Price & Availability of FTF3020-M

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X